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Introduction

Search of the X(3872) in lattice QCD:
L. Liu, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, P. Vilaseca, J. J. Dudek, R. G. Edwards, B. Joó, and
D. G. Richards, J. High Energy Phys. 07 (2012)

G. Bali, S. Collins, and P. Perez-Rubio, J. Phys. Conf. Ser. 426, 012017 (2013).

D. Mohler, S. Prelovsek, and R. M. Woloshyn, Phys. Rev. D87, 034501 (2013).

...

S. Prelovsek and L. Leskovec, Phys. Rev. Lett. 111, 192001 (2013): Bound state in
dynamical Nf = 2 lattice simulation with 11± 7 MeV below the
DD̄∗ threshold and quantum numbers 1++.

We develop a method to determine accurately the binding
energy of the X(3872) from lattice data.

The analysis of the data requires the use of coupled channels
D0D̄∗0 and D+D∗−.
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The X(3872) in the continuum limit

Hidden gauge Lagrangian

LIII = −1
4
〈VµνVµν〉+

1
2

M2
V 〈[Vµ −

i
g

Γµ]〉 (1)

where Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ], and g =
MV
2f .

−→ LPPV = −ig〈Vµ[P, ∂µP]〉 −→ L3V = ig〈(Vµ∂νVµ − ∂νVµVµ)V ν〉

Approximation: |ki |2/M2 ∼ 0 for external mesons,

ρ, ω, J/ψ

D

D̄∗

D

D̄∗

=⇒

D̄∗D̄∗

D D

(
∑

i Vi)
q2 ∼ 0

Fig. 1. Pointlike pseudos.-vector interaction.

M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985), M. Bando,
T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988), M. Harada and K. Yamawaki, Phys. Rept. 381, 1
(2003), U. G. Meissner, Phys. Rept. 161, 213 (1988).
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The X(3872) in the continuum limit

In the approximation |ki |2/M2
V ∼ 0, this is equivalent to,

Lagrangian LPPVV = − 1
4f 2 Tr (JµJ µ),

Currents Jµ = (∂µP)P − P∂µP, Jµ = (∂µVν)Vν − Vν∂µVν .
(L-L: J88µ, H-L: J83, H-H: J33̄)

Breaking Parameters m8∗ = mL = 800 MeV, m3∗ = mH = 2050
MeV, m1∗ = mJ/ψ = 3097 MeV, fπ = 93, fD = 165 MeV.

γ =
(

m8∗
m3∗

)2
=

m2
L

m2
H

, ψ =
(

m8∗
m1∗

)2
=

m2
L

m2
J/ψ

V ≡
ρ0
√

2
+ ω√

2
ρ+ K∗+ D̄∗0

ρ− − ρ0
√

2
+ ω√

2
K∗0 D∗−

K∗− K̄∗0 φ D∗−s
D∗0 D∗+ D∗+

s J/ψ


µ

D. Gamermann and E. Oset, Eur. Phys. J. A
36, 189 (2008)

D. Gamermann and E. Oset, Phys. Rev. D 80,
014003 (2009)

D. Gamermann, J. Nieves, E. Oset and
E. Ruiz Arriola, Phys. Rev. D 81, 014029
(2010)
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The X(3872) in the continuum limit

Bethe-Salpeter Eq.: T = −[I + VG]−1V V = − ξij

4f 2 (s − u)~ε · ~ε ′~ε · ~ε′
Channels: 1√

2
(K ∗−K + − c.c.), 1√

2
(K̄ ∗0K 0 − c.c.), 1√

2
(D∗+D− − c.c.),

1√
2

(D∗0D̄0 − c.c.), 1√
2

(D∗+s D∗−s − c.c.).

ξij ≡


−3 −3 0 −γ γ
−3 −3 −γ 0 γ
0 −γ −(1 + ψ) −1 −1
−γ 0 −1 −(1 + ψ) −1
γ γ −1 −1 −(1 + ψ)


γ = 0.14 ψ = 0.07

For G, dim. regularization formula or cutoff method can be used,

GDR (
√

s) =
1

16π2

{
α(µ) + ln

m2
1

µ2
+

m2
2 − m2

1 + s

2s
ln

m2
2

m2
1

+

+
q
√

s

[
ln(s − (m2

2 − m2
1) + 2q

√
s) + ln(s + (m2

2 − m2
1) + 2q

√
s)

− ln(−s + (m2
2 − m2

1) + 2q
√

s)− ln(−s − (m2
2 − m2

1) + 2q
√

s)
]}

, (2)

Gco(P0 =
√

s) =

∫
q<qmax

d3q

(2π)3

ω1 + ω2

2ω1ω2

1

(P0)2 − (ω1 + ω2)2 + iε
(3)
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The X(3872) in the continuum limit

Near to a pole: T ∼ gi gj
(s−sp)~ε · ~ε′

√
s0 = (3871.6− i0.001) MeV

Channel |gi | [MeV]
1√
2

(K ∗−K + − c.c) 53
1√
2

(K̄ ∗0K 0 − c.c) 49
1√
2

(D∗+D− − c.c) 3638
1√
2

(D∗0D̄0 − c.c) 3663
1√
2

(D∗+s D−s − c.c) 3395

Table 1. Couplings of the pole to the channel i with

αH = −1.265.

D. Gamermann, J. Nieves, E. Oset and E. R. Arriola,
PRD 81, 014029

Generalized compositeness condition:

−∑i g2
i
∂G
∂s = 1

Probability of finding the i ch. in
the wave func.,

0.86 for D∗0D̄0 − c.c,
0.124 for D∗+D− − c.c

and 0.016 for D∗+s D−s − c.c.

However (2π)3/2ψ(0)i = giGi (wave function at the origin) are nearly
equal, and this usually enters the evaluation of observables.
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Formalism in finite volume

G→ G̃ : G̃(P0) = 1
L3

∑
~qi

ω1(~qi )+ω2(~qi )
2ω1(~qi )ω2(~qi )

1
(P0)2−(ω1(~qi )+ω2(~qi ))2

= 1
L3

∑
~qi

I(P0, ~q)

where ωi =
√

m2
i + |~qi |2 and the momentum ~q is

quantized as ~qi = 2π
L
~ni , |~qi | = 2π

L
√

mi ,
n2

x,i + n2
y,i + n2

z,i = mi and nmax = qmax L
2π (symmetric box).

A. M. Torres, L. R. Dai, C. Koren, D. Jido, and E. Oset, PRD 85, 014027

G̃ = GDR + lim
qmax→∞

 1

L3

∑
q<qmax

I(P0
,~q)−

∫
q<qmax

d3q

(2π)3
I(P0

,~q)


≡ GDR + lim

qmax→∞
δG (4)

T → T̃ : T̃ = (I − VG̃)−1V Energy levels in the box:

det(I − VG̃) = 0
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Formalism in finite volume

δG converges as qmax →∞. We take and average for
different values between qmax = 1500− 2500 MeV.
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Fig. 2. Representation of δG = G̃ − G for D+D∗− in function of qmax for
√

s = 3850 MeV. The thick

line represents the average.
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Formalism in finite volume

One channel case: T = (G̃(Ei )− G(Ei ))−1
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Fig. 3. G̃(solid) and V−1(dashed) energy dependence of D+D∗− for Lmπ = 2.0. Dotted lines are the

free energies.

Energy levels in a cubic box for one channel:
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Fig. 4. L dependence of the energies for a single channel, D0D̄∗0 and D+D∗− respectively.
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Formalism in finite volume

At Lmπ = 1.4 (L = 2 fm), ∆E = E2(L)− E1(L) = 137 MeV (if
V = 0 ∆E0 = 194 MeV). While in the approach of S. Prelovsek
and L. Leskovec, it is 161 MeV: Both approaches have an
attractive interaction with similar strength, E1 = 3860 vs.
(3853± 8) MeV, E2 = 3997 vs. (4014± 11) MeV.

S. Prelovsek and L. Leskovec, Phys. Rev. Lett. 111, 192001 (2013)

Two channel case: For simplicity, we redone the calculation of
Table 1 with α = −1.153 in order to get the same position of the
pole of the X(3872) with two channels instead of five.
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Fig. 5. L dependence of the energies for the two first levels of D0D̄∗0 and D+D∗−. Dotted lines

correspond to the free energies.
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The inverse problem

QCD lattice data can be used to determine bound states of the DD̄∗

system,

We assume that the lattice data are some discrete points on the
energy trajectories (synthetic data).

We want to determine the potential and evaluate the pole
position of the X(3872) in infinite volume.

A set of data of 5 points in a range of Lmπ = [1.5, 3.5] for each
level (four levels with n = 0 and 1) with uncertainties, moving
randomly by 1 MeV the centroid assigning an error of 2 MeV, are
generated.
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Fig. 6. Fit to the data. Dots: synthetic data. Solid lines: energy levels using the potential fitted to the data.
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The inverse problem

Potential (six parameters to fit) : Vi = ai + bi

(√
s −
√

sth
)

i = 1 : D+D∗−, i = 2 : D0D̄∗0 : i = 3 : nondiagonal

The χ2 function is minimized. The binding energy is essentially
independent of the choice of α (one channel:T = (G̃(Ei )−G(Ei ))−1).
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Fig. 6. Contour plot for the χ2 representing χ2 ≤ χ2
min + 1. Points correspond to values of the parameters in the

χ2 minimum. (Circle and grey area: a1 and b1, Square and diagonal lined area: a2 and b2 and Diamond and

vertical lined area: a3 and b3.)
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Results

(B,P,∆E ,∆C) (a1, a2, a3) (b1, b2, b3) χ2 Pole Mean Pole σ
(4,5,2,1) (-140.2,-112.1,-132.8) (-0.31, 0.074, 0.012) 2.32 3871.51 3871.49 0.07
(4,5,5,2) (-140.2,-112.1,-132.8) (-0.31, 0.074, 0.012) 0.79 3871.51 3871.25 0.38
(4,3,2,1) (-133.0,-131.9,-124.6) (-0.24, 0.048,-0.075) 1.02 3871.44 3871.49 0.18
(4,3,5,2) (-120.1, -98.2,-150.9) (-0.38,-0.075, 0.102) 0.28 3871.41 3871.15 0.49
(2,5,2,1) (-176.1,-154.1, -89.3) ( 9.92, 7.01, -8.72) 0.259 3871.70 3871.47 0.30
(2,5,5,2) (-158.5,-152.2,-103.2) ( 4.56, 6.58, -6.74) 0.982 3871.34 3871.30 0.43
(2,3,2,1) (-132.7,-176.6,-105.5) ( 3.23, 0.84, -3.36) 0.074 3870.51 3870.48 0.61
(2,3,5,2) (-226.6,-194.5, -32.7) (31.81,13.28,-18.89) 0.942 3869.49 3870.37 1.06

Table 2. All possible set up changing number of branches (B), number of points (P), energy error bar (∆E) and

centroid of the energies (∆C) and their set of parameters fitted. The columns denoted as Results are the χ2

obtained in the fit, the pole is determined with the parameters, and the mean pole and dispersion.

The use of different values of α change the potential but not the
binding energy.

With errors in the data of 5 MeV, one can obtain the binding
energy with 1 MeV precision, and two levels are enough to have
an accurate value.

To have a very high precision in the binding energy (∼ 0.2 MeV),
requires high precision in the data.

It is necessary to distinguish between the two channels.
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Results

Considering the channel J/ψω does not change the results
since the coupling between DD̄∗ goes through anomalous
couplings VVP together with the exchange of the heavy
meson. This agrees with S. Prelovsek and L. Leskovec,
PRL 111, 192001: ’the J/ψω is not significantly coupled to
the rest of the system’.

D J/ψ

D̄∗ ω

D∗

Fig. 7. Mechanism for the transition from DD̄∗ to J/ψω.
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Results

In addition, we can know about the nature of the X(3872),

If the X(3872) was genuine, we can generate it using a potential
containing a CDD pole

V = VM +
g2

CDD

s − sCDD
(Castillejo,Dalitz,Dyson) (5)

with VM = 1/10V ′M . Taking
√

sCDD as 20 MeV above the
threshold, we obtain gCDD = 4620 MeV.

With the two lower levels, we get −∑2
i=1 g2

i
∂Gi
∂s = 1− Z = 0.51.

This tell us that the state has a large genuine component
Z ' 0.5, or Z ' 0.63 if we consider the shape of Eq. (5).

On the contrary, if VM = V ′M , −∑2
i=1 g2

i
∂Gi
∂s = 1− Z = 0.97.

E. J. Garzon, R. Molina, A. Hosaka and E. Oset, Phys. Rev. D
89, 014504 (2014).
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Conclusions

We have studied the X(3872) state using coupled channels
D+D∗− and D0D̄0 in a finite box simulating lattice data and
showing some strategies to extract the binding energy.

We obtain two energy curves for each level corresponding
to the neutral and charged channels. It is necessary to
differentiate them to have an accurate value of the binding
energy.
Even with errors in the data points of ' 5 MeV and two
levels, one can obtain the binding energy with ' 1 MeV
precision.
Having precise data allows us to get some information on
the nature through the generalized compositeness
condition.
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